

Determinants of Continuance Intention to Use Mobile Payments : A Meta-Analysis

*Ashique Ali K. A.*¹
*Rameshkumar Subramanian*²

Abstract

Purpose : This study aimed to consolidate the major determinants of continuance intention to use mobile payments by employing meta-analysis.

Design/Methodology/Approach : The application of systematic inclusion/exclusion criteria resulted in the retrieval of 54 journal articles relating to the subject chosen for this study. An in-depth literature analysis helped identify the various antecedents of continuance intention to use mobile payments. A weighted analysis followed by a meta-analysis based on 193 bivariate correlations paved the way for developing the mobile payment continuance intention model (MPCIM). Meta Essentials 1.5 was used for analysis.

Findings : The primary predictor of continuing to intend to use mobile payments is satisfaction, which is followed by expectation of effort and expectation of performance. Perceived behavioral control was found to have the least consolidated effect on the desire to continue using mobile payments; whereas, perceived risk had no significant combined effect.

Practical Implications : The impact of the primary factors of continued desire to use mobile payments will be consolidated and presented to regulatory bodies, service providers, and other interested parties.

Originality/Value : We have made an effort to close this gap by doing a meta-analysis of the primary factors that determine whether or not a person would continue to want to utilize mobile payments.

Keywords : mobile payment, *m*-payment, continuance intention to use, meta-analysis, weight analysis

Paper Submission Date : August 25, 2023 ; **Paper sent back for Revision :** March 12, 2024 ; **Paper Acceptance Date :** April 10, 2024 ; **Paper Published Online :** June 15, 2024

Digital payment enables customers to pay without relying on the traditional cash-centric system and eases how people perform payment-related transactions. The penetrating power of mobile phones and the payment technology embedded into mobile devices could easily reach the masses and motivate them to carry out digital payments through electronic modes. Smartphones with internet connectivity can conveniently offer many banking and payment services. Mobile payment (*m*-payment) enables to carry out payments using a mobile device (Liébana-Cabanillas et al., 2019) and provides ubiquitous services compared to traditional payment methods (Zhou, 2013). In the past, despite the advantages, individuals were hesitant to use mobile payments (Bailey et al., 2017; Talwar et al., 2020). According to Liébana-Cabanillas et al. (2019), numerous studies have been carried out on the early acceptance of *m*-payment. Behavioral intention (BI), which measures the intention of people to use *m*-payment, was identified by these studies as the dependent variable, which, in turn, is assumed to

¹Assistant Professor (Finance), School of Law, SVKM'S NMIMS, Deemed-to-be University, Hyderabad, Jadcherla - 509 301, Telangana. (Email : kaashiqueali@gmail.com); ORCID iD : <https://orcid.org/0000-0002-2969-4662>

²Professor (Corresponding Author), Department of Financial Administration, School of Management, Central University of Punjab, Bathinda - 151 401, Punjab. (Email : proframeshtcm@gmail.com)
ORCID iD : <https://orcid.org/0000-0001-6079-0532>

affect the actual usage of *m*-payment. Previous researchers extensively studied the initial usage intention and actual usage of *m*-payment by considering the numerous information system (IS) adoption theories as the base (Cao et al., 2018). Initial adoption can be a milestone in implementing any technology, but only the continuance of usage shows its success (Maduku, 2016; Zhou, 2014). People must adopt and continue using *m*-payment to make it the best alternative to the traditional cash-centric system.

Post-adoption customer intention must be understood, according to research on technology acceptance and strategic marketing (Shaikh et al., 2015). According to Bhattacherjee (2001), the phrase “continuance intention to use” describes users’ intentions to keep using the system once it has been adopted and put to use. There is a chance that people could stop using it after their initial experience for various reasons (Ali & Subramanian, 2023). Fewer studies have been undertaken on the continuance usage of *m*-payment (Liébana-Cabanillas et al., 2019); however, it has recently gained increased attention (Franque et al., 2023; Hossain et al., 2018; Humbani & Wiese, 2019). The expectation-confirmation model (ECM), task-technology fit (TTF) (Ahmed & Ali, 2017), the theory of reasoned actions (TRA), the unified theory of acceptance and use of technology (UTAUT), UTAUT2, and technology acceptance model (TAM) were utilized in the development of our conceptual models. The most influential factors affecting continuance usage of *m*-payment include but are not limited to perceived usefulness (Lim et al., 2019), perceived ease of use (Mensah, 2019), social influence (Mensah et al., 2020), satisfaction (Singh, 2020), trust, risk perception (Pal et al., 2020), service quality, convenience, and task-technology fit (Ahmed & Ali, 2017).

Nevertheless, the results of the current investigation are incongruent. As per other research, for example, satisfaction has been found to be both a significant (Cao et al., 2018) and an insignificant predictor (Park et al., 2017) of continuance intention (CI) using mobile payments. A number of parameters, including sample size, study location, and target group, influence CI differently, even though the factors were substantial and meaningful. The research on mobile payment continuance usage intention shall be systematically consolidated in such a way that the combined effect of the identified determinants will give service providers and regulatory authorities a better picture of how important they are on a relative scale. Hence, a meta-analysis would be highly useful in synthesizing the results of the existing literature on *m*-payment. The meta-analysis, a literature review technique, calculates the combined effect size for selected bivariate relationships from the correlation values reported in the extant literature (De Oliveira Santini et al., 2019).

Several related fields of study, including banking technology (Baptista & Oliveira, 2016; De Oliveira Santini et al., 2019; Jadil et al., 2021; Sardana et al., 2024; Sharma et al., 2022), IS continuance intention (Franque et al., 2021), etc., have applied meta-analysis. Though review articles are found in *m*-banking literature (Ali & Subramanian, 2024; Jadil et al., 2021; Shaikh & Karjaluoto, 2015), systematic literature reviews and meta-analyses are very scarce in the field of *m*-payment. de Albuquerque et al. (2016) systematically analyzed *m*-payment literature published between 2001 and 2011 but did not involve meta-analysis. Patil et al. (2019) conducted a meta-analysis of digital payments adoption, which had a broader scope. Both Liu et al. (2019) and Tan et al. (2022) have conducted a meta-analysis on *m*-payment adoption. Additionally, Tan et al. (2022) examined the effect of various determinants on CI through meta-analysis, considering less than 10 studies. Franque et al. (2021) have conducted a meta-analysis of extant studies focusing on the continuance intention to use IS in general. There is no such study that examined the consolidated effect of factors influencing CI, which is the uniqueness of this study. Therefore, this study aims to fill this research gap by analyzing the bivariate relationship between independent constructs (determinants) and continuance intention to use *m*-payment through a meta-analysis. Additionally, it seeks to create a conceptual model of CI by synthesizing the findings of existing correlations found in the literature using meta-analysis. Future research could provide empirical validation for this conceptual model, and policymakers could use the findings to narrow in on the key factors that influence CI.

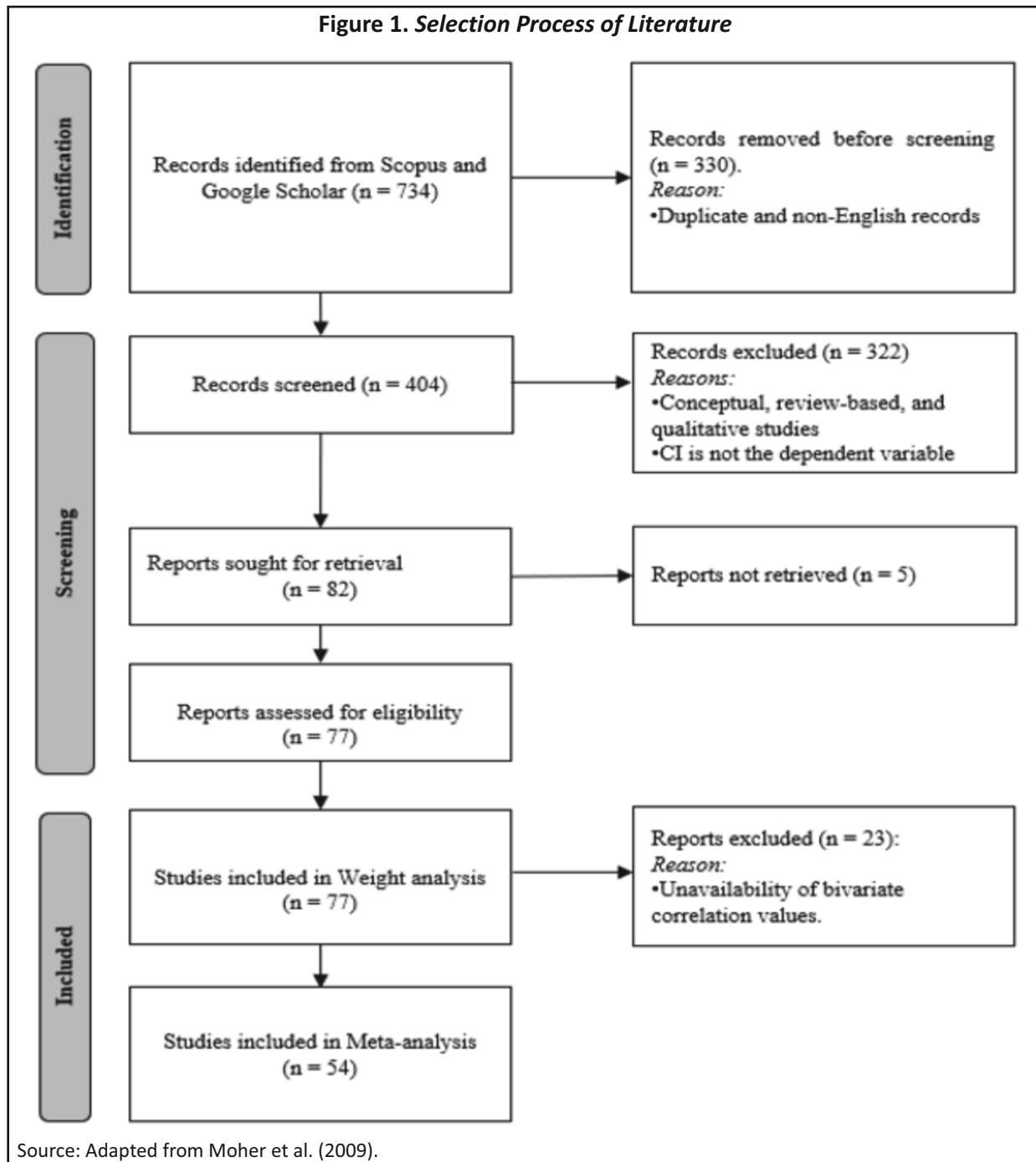
Materials and Methods

The present study is a review-based study in which a meta-analytical approach is followed to comprehensively analyze the combined effect of major independent variables on continuance intention to use mobile payment. The combined effect is calculated using Meta Essentials 1.5.

Screening Process

Using various keyword combinations, such as mobile payment, *m*-payment, mobile wallets, *m*-wallets, continuance intention, and continuance usage, the authors searched the Scopus database and Google Scholar to obtain journal articles on continuation intention to use *m*-payment as of June 2022. The Scopus database is well-utilized in previous systematic literature reviews (Mahajan et al., 2023; Sabirali & Mahalakshmi, 2023). The Boolean operators “AND” and “OR” were used wherever required. We searched the keywords in the abstract-only option. The results from Google Scholar were brought into a Microsoft Excel sheet using Publish or Perish software, and a CSV formatted file was directly downloaded from the Scopus database. The PRISMA framework, which was supported by Moher et al. (2009) and was employed in numerous prior systematic literature reviews and meta-analyses, was followed during the screening process (Linge et al., 2022; Shetty & Poornima, 2023; Shetty et al., 2022; Thalhath, 2022).

All of the duplicates were eliminated once the results from the Scopus and Google Scholar databases were combined. The only publications that were taken into consideration were journal articles and conference proceedings; non-English publications were not. The results were subjected to title and abstract screening in the next stage. Only empirical studies based on primary data collected from *m*-payment users were included, and the studies that did not consider CI as a dependent variable were excluded. At the end of the process, 77 out of 82 research papers were selected for full-text analysis (Figure 1) since we could not get five articles from any source, even after approaching the respective authors. While 77 articles were considered for weight analysis, only 54 studies were involved in meta-analysis after checking the availability of the correlation coefficients. The selected studies were conducted across 20 countries, primarily Asian nations like Indonesia, China, and India, from 2013 to 2022. TAM and ECM were the most commonly used theoretical models in these studies.


Weight Analysis

This method considers the importance of a predictor by calculating a ratio between statistically significant results and the total number of studies used (Franque et al., 2021). We made an in-depth review of 77 articles and identified both significant and insignificant relationships reported in these studies. For weight analysis, the procedures laid down by Jeyaraj et al. (2006) have been followed (Baptista & Oliveira, 2016; Franque et al., 2021), which classified the predictors into two: well-utilized (examined five or more times) and experimental constructs (examined less than five times). Moreover, the best and most promising predictors, respectively, are thought to be well-utilized constructs with a weight larger than 0.8 and an experimental construct equal to one (Jeyaraj et al., 2006).

Meta-Analysis

Meta-analysis is a technique by which the combined effect size of a bivariate relationship is calculated from many empirical studies (Jadil et al., 2021). Therefore, each bivariate relationship is studied separately under meta-analysis. In order to calculate the *r* family effect size, we made sure the publications under consideration had

Figure 1. Selection Process of Literature

sample sizes and bivariate correlation values available. First, the independent constructs used in the 54 studies were written down along with their frequencies. The bivariate relationships examined in at least three or more studies were only taken into consideration for meta-analysis, as advocated by Rana et al. (2015) and followed by Baptista and Oliveira (2016) and Franque et al. (2021). The authors have prepared an MS Excel sheet showing the various independent-dependent relationships between constructs where CI, satisfaction, trust, and perceived usefulness were kept as the dependent constructs.

The random effect size model is the preferred meta-analysis methodology for this investigation since it assigns all studies the same weight, regardless of sample size (Borenstein et al., 2009). The studies under consideration exhibit between-study diversity due to their diverse target groups and geographical locations (Kaur et al., 2022). Therefore, it does not constitute a homogenous population, and the random effect size model is suitable (Borenstein et al., 2009). A random effect size model presupposes that the empirical estimates of the treatment effect can differ across studies due to sampling variability and actual variations in the treatment effect in each study (Borenstein et al., 2009). The fixed effect method is chosen only when there is between-study variation due to sample size (Franque et al., 2021).

Analysis and Results

Weight Analysis

In 77 studies, 79 independent constructs were examined as determinants of CI. It consisted of 246 relationships observed, of which 206 were significant (83.73%). Weight analysis is done by dividing the number of studies with significant beta values (positive and negative) by the total number of studies examining such a relationship (Franque et al., 2021). For instance, satisfaction significantly affects CI in 38 out of 40 past studies; hence, the weight is 0.95. Attitude, habit, and performance expectancy significantly influenced CI in all the studies that examined these relationships. Seven of 12 well-utilized constructs are the best predictors (see Table A1 in the Appendix). There were 50 promising predictors, of which 35 were examined only once.

Thirty-nine independent constructs were examined as determinants of satisfaction in 77 studies, consisting of 113 relationships, of which 80 were found to be significant (70.8%). Perceived usefulness, along with perceived ease of use, trust, and confirmation, is the most significant predictor of satisfaction according to weight analysis. Four of six well-utilized constructs are the best predictors of satisfaction (Table A2). There are 33 experimental predictors, of which 23 are examined only once. Perceived risk is a promising predictor of satisfaction as per weight analysis (Table A2).

As far as trust is concerned, 36 independent constructs were examined 64 times in the extant literature. As per weight analysis, service quality, perceived security, information quality, and reputation are significant predictors of trust. All the well-utilized constructs are the best predictors (Table A3). There were 31 experimental predictors, of which 27 were examined only once. System quality is also one of the significant predictors of trust (Table A3).

We could find 26 independent constructs affecting perceived usefulness in the 77 studies under analysis. In total, 52 relationships were examined, of which 39 were significant. As per weight analysis, confirmation was the significant predictor of perceived usefulness, followed by perceived ease of use. Both the well-utilized constructs were the best predictors (Table A4). We found 24 experimental predictors, of which 19 were examined only once in past studies. Compatibility, perceived security, and task-technology fit were promising predictors as per weight analysis (Table A4).

Descriptive Analysis

Table 1 shows the results of descriptive analysis of the selected bivariate relationships. We selected 27 bivariate relationships from the extensive literature review where CI, SAT, TR, and PU were kept as dependent constructs. In total, these relationships were examined 193 times in the literature. The number of studies considering each path is shown under column *N*. The relationship between satisfaction and continuance intention has been studied in 29 research articles. The bivariate correlations between TR-CI, PU-CI, PU-SAT, and CNF-SAT have been the subject of more than 10 research studies.

Table 1. Descriptive Statistics

Path	N	Sample Size				Range of <i>r</i>	Average of <i>r</i>
		Min.	Max.	Average	Total		
SAT → CI	29	142	1840	418.24	12129	0.233 – 0.89	0.628
TR → CI	16	195	1840	443.25	7092	0.339 – 0.735	0.546
PU → CI	14	142	1840	500.14	7002	0.095 – 0.814	0.503
SI → CI	8	187	794	456.75	3654	0.114 – 0.678	0.517
ATT → CI	6	210	388	318.33	1910	0.218 – 0.746	0.539
SN → CI	6	280	1840	595.5	3573	0.164 – 0.793	0.503
PEU → CI	5	280	794	437.4	2187	0.190 – 0.624	0.382
PR → CI	5	180	1840	693.6	3468	-0.499 – 0.374	-0.192
EE → CI	5	180	584	353.8	1769	0.480 – 0.771	0.636
PE → CI	5	226	584	363	1815	0.585 – 0.695	0.633
FC → CI	4	187	584	351.5	1406	0.324 – 0.776	0.582
PS → CI	3	200	370	274	822	0.407 – 0.433	0.424
PBC → CI	3	280	387	325.33	976	0.240 – 0.490	0.328
PI → CI	3	182	1840	1066	3198	0.437 – 0.719	0.572
PU → SAT	14	142	654	319.79	4477	0.260 – 0.898	0.589
CNF → SAT	11	142	716	364.45	4009	0.289 – 0.890	0.660
TR → SAT	6	180	410	272.83	1637	0.161 – 0.926	0.585
SQ → SAT	6	180	398	294.83	1769	0.353 – 0.660	0.480
PEU → SAT	6	205	426	317.5	1905	0.280 – 0.724	0.531
SYQ → SAT	4	195	398	330	1320	0.432 – 0.635	0.502
IQ → SAT	3	195	389	307.33	922	0.348 – 0.524	0.449
SQ → TR	5	180	954	397.4	1987	0.543 – 0.718	0.634
IQ → TR	4	195	954	441	1764	0.474 – 0.638	0.568
PS → TR	3	250	740	453.33	1360	0.560 – 0.793	0.660
SYQ → TR	3	195	389	270	810	0.428 – 0.580	0.528
CNF → PU	9	142	954	391.78	3526	0.280 – 0.860	0.606
PEU → PU	7	205	426	342.14	2395	0.350 – 0.707	0.598

N – Number of studies ; *r* – Correlation coefficient ; Min-Minimum ; Max-Maximum ATT – Attitude ; CNF – Confirmation ; CI – Continuance intention to use ; EE – Effort expectancy ; FC – Facilitating conditions ; IQ – Information quality ; PBC – Perceived behavioral control ; PEU – Perceived ease of use ; PR – Perceived risk ; PS – Perceived security ; PU – Perceived usefulness ; PE – Performance expectancy ; PI – Personal innovativeness ; SAT – Satisfaction ; SQ – Service quality ; SI – Social influence ; SN – Subjective norms ; SYQ – System quality ; TR – Trust.

The correlation values and sample size are the essential inputs needed for meta-analysis. The average sample size for each path varies from 270 to 1,066, with a minimum sample size of 142 for five bivariate relationships (SAT and PU with CI; PU and CNF with SAT; and CNF with PU) and a maximum of 1,840 for six bivariate relationships (SAT, TR, PU, SN, PR, and PI with CI). The range of '*r*' values denotes the extent to which the reported correlations vary. The higher the gap between lower and higher correlations, the greater the variability among the studies. Perceived security and performance expectancy had a narrow range of correlation coefficients with CI. The average '*r*' values show that all the independent variables positively correlate with CI except

perceived risk. Satisfaction, effort expectancy, and performance expectancy are highly correlated with CI. The least positively correlated variable with CI is perceived ease of use (Average $r=0.382$). A high correlation is found between satisfaction and other factors such as confirmation, perceived usefulness, and trust. The descriptive analysis confirms the variability among the studies regarding the relationships between the constructs, which establishes the need for meta-analysis.

Meta-Analysis

The combined effect size of each bivariate relationship is calculated at a 95% confidence level using Meta Essential 1.5, a set of spreadsheet workbooks (Suurmond et al., 2017), and reported in Table 2. The results show

Table 2. Meta-Analysis

Path	<i>k</i>	<i>N</i>	<i>Z</i> (<i>p</i> -value)	Effect size (<i>r</i>)	CI	PI	<i>Q</i> (<i>p</i> -value)	<i>I</i> ²	<i>T</i> ²
<i>SAT-CI</i>	29	12,129	13.60 (0.000)	0.66	0.59 – 0.72	0.12 – 0.90	1237.55 (0.000)	97.74%	0.11
<i>TR-CI</i>	16	7,092	13.09 (0.000)	0.56	0.48 – 0.63	0.16 – 0.80	305.20 (0.000)	95.09%	0.05
<i>PU-CI</i>	14	7,002	7.41 (0.000)	0.53	0.40 – 0.64	-0.27 – 0.90	949.68 (0.000)	98.63%	0.15
<i>SI-CI</i>	8	3,654	6.84 (0.000)	0.53	0.37 – 0.67	-0.12 – 0.86	265.59 (0.000)	97.36%	0.08
<i>ATT-CI</i>	6	1,910	5.51 (0.000)	0.56	0.33 – 0.73	-0.12 – 0.88	118.88 (0.000)	95.79%	0.07
<i>SN-CI</i>	6	3,573	4.09 (0.000)	0.54	0.22 – 0.76	-0.47 – 0.94	412.87 (0.000)	98.79%	0.17
<i>PEU-CI</i>	5	2,187	3.97 (0.000)	0.40	0.13 – 0.61	-0.27 – 0.81	89.79 (0.000)	95.55%	0.05
<i>PR-CI</i>	5	3,468	-1.27 (0.203)	-0.20	-0.57 – 0.24	-0.83 – 0.66	236.93 (0.000)	98.31%	0.10
<i>EE-CI</i>	5	1,769	8.35 (0.000)	0.65	0.48 – 0.78	0.19 – 0.88	51.60 (0.000)	92.25%	0.04
<i>PE-CI</i>	5	1,815	22.64 (0.000)	0.64	0.58 – 0.69	0.52 – 0.74	8.59 (0.072)	53.43%	0.00
<i>FC-CI</i>	4	1,406	4.34 (0.000)	0.61	0.19 – 0.85	-0.36 – 0.95	90.90 (0.000)	96.70%	0.09
<i>PS-CI</i>	3	822	48.35 (0.000)	0.43	0.39 – 0.46	0.39 – 0.46	0.14 (0.930)	0.00%	0.00
<i>PBC-CI</i>	3	976	3.68 (0.000)	0.34	-0.06 – 0.64	-0.43 – 0.82	18.57 (0.000)	89.23%	0.03
<i>PI-CI</i>	3	3,198	5.33 (0.000)	0.59	0.13 – 0.84	-0.31 – 0.93	66.11 (0.000)	96.97%	0.04
<i>PU-SAT</i>	14	4,477	8.31 (0.000)	0.62	0.49 – 0.73	-0.02 – 0.90	477.56 (0.000)	97.28%	0.11
<i>CNF-SAT</i>	11	4,009	7.88 (0.000)	0.70	0.56 – 0.81	0.15 – 0.92	333.80 (0.000)	97%	0.09
<i>TR-SAT</i>	6	1,637	3.86 (0.000)	0.65	0.25 – 0.86	-0.64 – 0.98	427.35 (0.000)	98.83%	0.32
<i>SQ-SAT</i>	6	1,769	7.62 (0.000)	0.49	0.34 – 0.61	0.11 – 0.74	37.25 (0.000)	86.58%	0.02
<i>PEU-SAT</i>	6	1,905	5.77 (0.000)	0.55	0.33 – 0.72	-0.12 – 0.88	116.21 (0.000)	95.70%	0.07
<i>SYQ-SAT</i>	4	1,320	8.48 (0.000)	0.51	0.34 – 0.65	0.10 – 0.77	18.96 (0.000)	84.18%	0.02
<i>IQ-SAT</i>	3	922	7.97 (0.000)	0.46	0.22 – 0.64	0.05 – 0.73	5.87 (0.053)	65.95%	0.01
<i>SQ-TR</i>	5	1,987	12.46 (0.000)	0.64	0.53 – 0.73	0.39 – 0.80	20.14 (0.000)	80.13%	0.01
<i>IQ-TR</i>	4	1,764	11.09 (0.000)	0.57	0.43 – 0.68	0.24 – 0.78	16.82 (0.001)	82.17%	0.01
<i>PS-TR</i>	3	1,360	6.04 (0.000)	0.67	0.23 – 0.89	-0.38 – 0.97	51.36 (0.000)	96.11%	0.06
<i>SyQ-TR</i>	3	810	8.51 (0.000)	0.53	0.28 – 0.71	0.03 – 0.82	8.15 (0.017)	75.45%	0.01
<i>CNF-PU</i>	9	3,526	8 (0.000)	0.63	0.48 – 0.74	0.11 – 0.88	207.36 (0.000)	96.14%	0.07
<i>PEU-PU</i>	7	2,395	9.77 (0.000)	0.61	0.49 – 0.71	0.22 – 0.83	75.07 (0.000)	92.01%	0.03

Note. *k* – Number of studies ; *N* – Total sample size ; CI – Confidence interval ; PI – Prediction interval ; *Q*, *I*², and *T*² – Indicators of heterogeneity.

the combined effect size for bivariate relationships between independent constructs and CI, satisfaction, trust, and perceived usefulness.

Out of the 27 bivariate relationships considered under meta-analysis, 26 are significant. The relationship between perceived risk and CI is insignificant ($r = -0.20$; $Z = -1.27$; $p > 0.05$). As per the consolidated effect size, satisfaction emerges as the chief predictor of CI ($r = 0.66$, $p < 0.05$), followed by effort expectancy ($r = 0.65$, $p < 0.05$), performance expectancy ($r = 0.64$, $p < 0.05$), and facilitating conditions ($r = 0.61$, $p < 0.05$). Similarly, confirmation ($r = 0.70$, $p < 0.05$), trust ($r = 0.65$, $p < 0.05$), and perceived usefulness ($r = 0.62$, $p < 0.05$) are the essential determinants of satisfaction. While the perceived security ($r = 0.67$, $p < 0.05$) and service quality ($r = 0.64$, $p < 0.05$) have a higher correlation with trust, confirmation ($r = 0.63$, $p < 0.05$) and perceived ease of use ($r = 0.61$, $p < 0.05$) show a greater relationship with perceived usefulness.

Cohen (1988) distinguishes three categories for the correlation effect size: small ($r >= 0.10$), medium ($r >= 0.30$), and big ($r >= 0.50$). Accordingly, the current meta-analysis reveals 21 large effects, five medium effects, and one small effect. The linkage between perceived risk and CI is negative but non-significant and has a small effect. The paths such as PEU-CI, PS-CI, PBC-CI, SQ-SAT, and IQ-SAT have a medium effect. All other relationships have a large effect. As per the confidence interval range, the effect size of perceived security, performance expectancy, satisfaction, and trust on CI are more precise than others as the difference between lower and higher levels is narrow.

The measures of heterogeneity (Q , I^2 , and T^2) reveal heterogeneity in all the path relationships except for PS-CI ($Q = 0.14$, $p > 0.05$), PE-CI ($Q = 8.59$, $p > 0.05$), and IQ-SAT ($Q = 5.87$, $p > 0.05$). The I^2 value is more than 75% for other relationships under study, indicating high variability among the studies (De Oliveira Santini et al., 2019; Higgins et al., 2003). The between-study variation can be attributed to the presence of moderating variables. Previous studies (De Oliveira Santini et al., 2019; Franque et al., 2021; Jadil et al., 2021) have used subgroup analysis to identify potential categorical moderators, including methodological (sample size and sample type), cultural, and economic characteristics. However, the current study does not proceed with subgroup analysis as the relationships identified do not have enough observations ($k > 30$) (De Oliveira Santini et al., 2019; Franque et al., 2021).

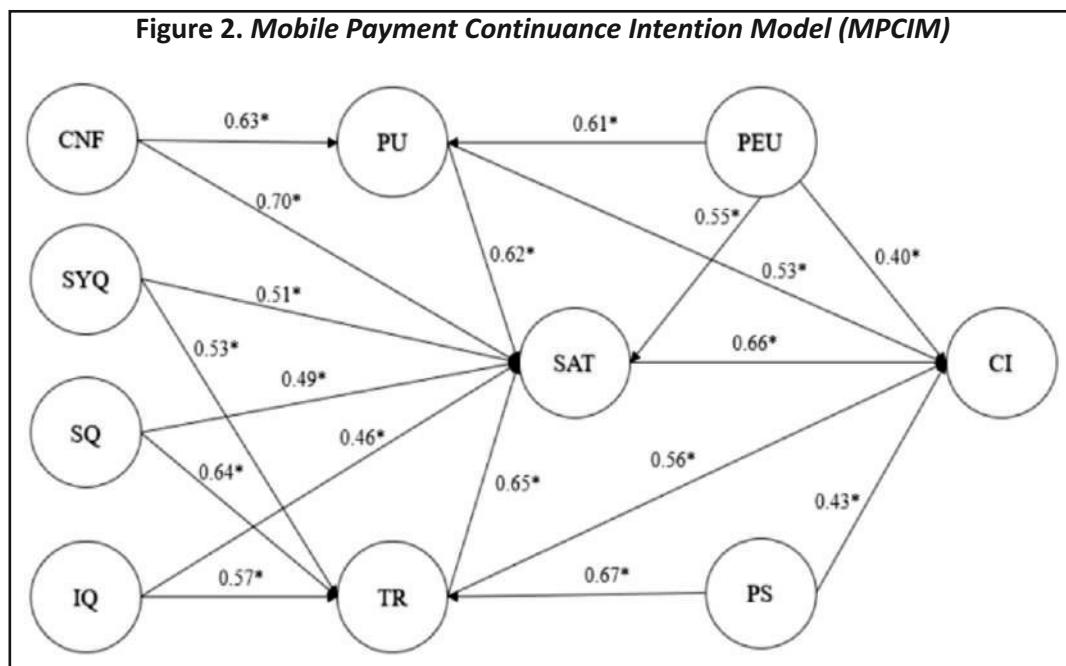


Figure 2 shows the proposed mobile payment continuance intention model (MPCIM) derived from the meta-analysis. The model consists of 10 constructs. CI is the primary dependent variable, and perceived ease of use, satisfaction, perceived security, perceived usefulness, and trust are significant determinants of CI. Satisfaction is determined by confirmation, perceived usefulness, trust, perceived ease of use, system quality, service quality, and information quality. Trust is impacted by system quality, service quality, information quality, and perceived security, but the perceived utility is determined by perceived simplicity of use and confirmation. The path “CNF-PU-SAT-CI” is the replica of ECM developed by Bhattacherjee (2001). Perceived ease of use and perceived usefulness are the constituents of the TAM of Davis et al. (1989). Unsurprisingly, ECM and TAM are the theoretical models that are most commonly used in studies focusing on *m*-payment continuance intention.

Discussion

In the end, the awareness, acceptance, and continuous use of any invention by current and potential consumers determine its successful introduction and implementation (Zhou, 2013). Multiple independent variables influence CI, according to a review of 54 research studies. To investigate the variations in each study's findings brought about by the various effects of independent factors, weight analysis is employed initially, followed by meta-analysis.

Weight is calculated for each relationship found in 77 research papers considered for analysis. Attitude, habit, performance expectancy, and satisfaction register the highest weight as the independent constructs of CI. The *m*-payment continuance intention literature uses satisfaction as the most common predictor of CI. A total of 95% of the 40 studies that examined the relationship between satisfaction and CI concluded that it was significant.

The meta-analysis also reveals the large significant effect of satisfaction on CI. Satisfaction refers to the psychological feeling of a person about the experience of using *m*-payment (Franque et al., 2023). Bhattacherjee (2001) has included satisfaction as an essential determinant of CI (Wang, 2020), and is proven by other studies in various domains (Ali & Subramanian, 2023; Gadhiya & Panchal, 2021). The existing literature has demonstrated its significant influence on users' intention to continue using *m*-payment (Singh, 2020; Zhou, 2013), and the current study has confirmed its significant consolidated effect. Therefore, satisfied users will likely continue using *m*-payment services.

A happy customer is more likely to stick with a service for a longer amount of time for factors like usefulness, convenience, and validated expectations. The confirmation of expectations, a crucial element within the ECM (Bhattacherjee, 2001), gauges how well a person's expectations align with his/her actual technology experience, such as *m*-payment in this context. Our analysis notes a significant confirmation-satisfaction relationship, particularly pronounced in certain studies (Franque et al., 2023; Lim et al., 2019). Satisfaction demonstrates significant relationships with trust, PU, PEOU, service quality, system quality, and information quality. Notably, service and information quality moderately influence satisfaction, though users' perception of quality is pivotal for sustained service use (Liébana-Cabanillas et al., 2019) as service quality, system quality, and information quality substantially impact trust, which consequently strongly influences satisfaction and CI.

The concept of perceived utility is frequently employed in the literature on mobile payments. The weighted analysis verifies that PU has a noteworthy impact on CI in previous research. Additionally, the meta-analysis demonstrates a stronger impact of PU on CI. Users are, therefore, more inclined to stick with *m*-payment if they find it useful. Weight analysis and meta-analysis indicate that PEOU has only a moderate impact on CI, suggesting that customers are more likely to stick with the service if they view ease of use as a benefit.

PU also strongly affects users' trust in *m*-payment, as evidenced by the meta-analysis. The positive effect of

PEOU on PU, as advocated in TAM, is once again proved in the current meta-analysis. Furthermore, perceived ease of use also has a greater impact on satisfaction. The usefulness and easiness of using a product encourage people to use it again, ultimately resulting in satisfaction and continuance of usage (Reddy & Rao, 2021). The CNF-PU link, aside from PEOU, is noteworthy and has a substantial impact. When consumers' expectations are satisfied, they view mobile payments as superior to other options.

Three constructs from the UTAUT model (Venkatesh et al., 2003), viz., effort expectancy, facilitating conditions, and performance expectancy, had a larger effect on CI. However, only a few studies have examined such relationships. Hence, more studies are to be undertaken to ensure the existence of a significant relationship between UTAUT constructs and CI. Also, there are similarities between PEOU and effort expectancy, as well as PU and performance expectancy, as UTAUT is an improved version of previous IS acceptance models, including TAM (Venkatesh et al., 2003). In a nutshell, expectations of ease and usefulness are crucial in determining CI. A promising feature in predicting CI is the presence of enabling conditions, which denote the availability of the tools and information required to use such services (Venkatesh et al., 2003).

Trust is critical in adopting and continuously using technology (Cao et al., 2018). Previous studies have found trust as a significant antecedent of CI (Handarkho, 2021; Pal et al., 2020), confirmed by meta-analysis. If the payment service is not trustworthy, users will discontinue using it. Trust refers to users' confidence in the service provider's ability, integrity, and benevolence (Cao et al., 2018). It is an individual's perception that the service consistently meets the users' expectations. Regarding *m*-payment, as it relates to financial matters, no one will adopt or continue to use it without trusting it (Zhou, 2013).

Like trust, risk perception also determines one's intention to use new technology (Tan & Lau, 2016). It is the degree of expected uncertainty associated with the use of *m*-payment. People may continue to have a higher degree of risk perception toward *m*-payment, negatively affecting their continuance usage (Pal et al., 2020). PR is one of the best predictors of CI based on weight analysis but has an insignificant effect on CI based on the meta-analysis. Despite being negative, the path PR-CI's total effect magnitude is not statistically significant. After using *m*-payments on a regular basis, people's sense of risk may lessen. Nonetheless, earlier research (Shao et al., 2019) has discovered a sizable detrimental effect of perceived risk on CI. Perceived risk remains one of the most important elements impacting CI, as the weight analysis supports.

In contrast to perceived risk, perceived security shares the positive feelings of users about the security aspects of payment technology, such as information privacy (Singh, 2020). PS-CI path shows only a medium effect ($r = 0.43$). However, the PS-TR path shows a larger effect ($r = 0.67$), calling for a detailed examination of the mediating role of trust in the relationship between perceived security and CI.

Managerial and Theoretical Implications

Meta-analysis is an underutilized technique in *m*-payment literature, especially in analyzing CI. Liu et al. (2019) and Tan et al. (2022) have used the meta-analysis technique to identify the antecedents of initial acceptance of *m*-payment. We extended the meta-analytic approach to understanding the major determinants of CI. This study can guide future meta-analytic studies on the subject chosen for analysis. The previous meta-analytic studies could analyze 156 (Tan et al., 2022) and 290 (Liu et al., 2019) effect sizes from the *m*-payment literature. In contrast, this study analyzes 193 bivariate correlations of 27 relationships in 54 studies.

This study highlights the importance of customer pleasure in keeping clients. Service providers need to assess what users anticipate from *m*-payments in terms of security, usability, and resource accessibility and then adjust their offerings accordingly. Users' quality perception is positively associated with their satisfaction level. Hence, maintaining the quality of service in terms of relevant information, design, and system viability, as well as overall service, should be given top priority by the managers of *m*-payment services. Building trust and reducing risk

perception is vital, as negative experiences can lead to discontinuation of *m*-payment (Zhou, 2014). Quick payments and prompt refunds for unsuccessful transactions help build client trust. Reduced perception of risk increases the desire to keep using mobile payments.

The meta-analysis developed the MPCIM, an integrated model merging constructs from established IS acceptance and continuance models (ECM, TAM, IS success model). It adds to the theoretical frameworks of extant *m*-payment research. According to Chen et al. (2021), there is a possibility that a multi-theoretical approach adds more to the complexity of the subject being studied. Given this logic, the goal to employ *m*-payment continuation may be well explained by MPCIM as an integrated model, but it has to be empirically validated.

Conclusion

The extant literature on CI is minimal but produced mixed results on the impact of the factors influencing it. The disparity in the findings of such studies motivated us to conduct a meta-analysis. A systematic approach has been undertaken for literature extraction and screening. The weight and meta-analyses have been carried out to consolidate the effect size of each selected determinant and its impact on CI, satisfaction, perceived usefulness, and trust. The meta-analysis helped us propose the MPCIM consisting of 10 constructs. Satisfaction is the most influencing antecedent of CI, followed by effort expectancy and performance expectancy. Confirmation has a large effect on perceived usefulness and satisfaction. Perceived security and service quality have a larger effect on trust, which, in turn, has a strong association with satisfaction and CI. The current study's findings will help the stakeholders frame suitable plans and strategies for developing the *m*-payment technology to meet the everchanging expectations of the users and make them more satisfied to ensure their continuance usage.

Limitations of the Study and Scope for Further Research

This meta-analysis study has certain limitations. First, as continuance usage is a less explored area of *m*-payment literature, the number of research articles included in the analysis was limited. Unlike focusing on a specific model like TAM or ECM, we created a new model from common constructs in the literature. Future researchers could select studies centered on a theoretical model, consolidating determinants of continuance usage intention. A meta-analysis could merge TAM, UTAUT2, and ECM constructs to assess usage intention (initial or continuance) in *m*-payment. This clarifies which model better explains the dependent construct.

The publication bias that favors significant correlations and may omit trivial effects is a shortcoming of the meta-analytic approach. This bias was exacerbated by the exclusion of theses and book chapters from our analysis, which was based on data from Scopus and Google Scholar. Excluded studies did not have published bivariate correlations. Future researchers should consider these limitations when selecting diverse literature sources like the Web of Science. Heterogeneity in prior results was unexplained here with potential moderators. To address this gap, subsequent studies could explore moderators like sample size, study location, methodology, culture, and economic factors.

This meta-analysis reaffirms customer satisfaction's importance in *m*-payment continuance usage. Future research could construct a model to analyze antecedents of customer satisfaction in *m*-payment. Furthermore, they may investigate how customer satisfaction mediates the relationship between CI and its determinants. Moreover, other promising factors, like service quality, facilitating conditions, flow, personal innovativeness, etc., identified in this study may be considered by future researchers while analyzing CI. Promising or experimental constructs like convenience, flow, personal innovativeness, etc., require further empirical examination.

Even though MPCIM may better explain the continuance intention to use *m*-payment, it requires empirical validation. We may validate MPCIM globally to examine cross-national variations by introducing potential

moderators such as cultural factors, country development, gender, etc. In MPCIM, satisfaction may mediate the relationships of perceived usefulness, trust, and perceived ease of use with CI, a proposition warranting empirical validation due to customer satisfaction's pivotal role in *m*-payment continuance usage.

Authors' Contribution

Ashique Ali K. A. and Rameshkumar Subramanian conceptualized the research problem, and Ashique Ali K. A. collected and analyzed the data. Rameshkumar Subramanian made a valuable addition to the manuscript written by the first author.

Conflict of Interest

The authors declare that there is no conflict of interest between the authors. The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Funding Acknowledgment

The authors received no financial support for the research, authorship, and/or for the publication of this article.

References

Ahmed, I. S., & Ali, A. Y. (2017). Determinants of continuance intention to use mobile money transfer: An integrated model. *Journal of Internet Banking and Commerce*, 22(S7), 1–24. <http://www.icommercecentral.com>

Ali, K. A., & Subramanian, R. (2023). Determinants of continuance intention to use MBPS: A meta-analysis. In S. Banerjee, B. Pal, D. Mohanti, D. Chanda, & Y. Abichandani (eds.), *Emerging business models: A twentyfirst century perspective* (1st ed., pp. 14–33). Bloomsbury.

Ali, K. A., & Subramanian, R. (2024). Current status of research on mobile banking: An analysis of literature. *Vision*, 28(1), 7–18. <https://doi.org/10.1177/09722629211073268>

Bailey, A., Pentina, I., Mishra, A. S., & Mimoun, M. S. (2017). Mobile payments adoption by US consumers: An extended TAM. *International Journal of Retail & Distribution Management*, 45(6), 626–640. <https://doi.org/10.1108/IJRD-08-2016-0144>

Baptista, G., & Oliveira, T. (2016). A weight and a meta-analysis on mobile banking acceptance research. *Computers in Human Behavior*, 63, 480–489. <https://doi.org/10.1016/j.chb.2016.05.074>

Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. *MIS Quarterly*, 25(3), 351–370. <https://doi.org/10.2307/3250921>

Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2009). *Introduction to meta-analysis*. John Wiley & Sons. <https://doi.org/10.1002/9780470743386>

Cao, X., Yu, L., Liu, Z., Gong, M., & Adeel, L. (2018). Understanding mobile payment users' continuance intention: A trust transfer perspective. *Internet Research*, 28(2), 456–476. <https://doi.org/10.1108/IntR-11-2016-0359>

Chen, Y., Mandler, T., & Meyer-Waarden, L. (2021). Three decades of research on loyalty programs: A literature review and future research agenda. *Journal of Business Research*, 124, 179–197. <https://doi.org/10.1016/j.jbusres.2020.11.057>

Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nd ed.). Routledge. <https://doi.org/10.4324/9780203771587>

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. *Management Science*, 35(8), 982–1003. <https://doi.org/10.1287/mnsc.35.8.982>

de Albuquerque, J. P., Diniz, E. H., & Cernev, A. K. (2016). Mobile payments: A scoping study of the literature and issues for future research. *Information Development*, 32(3), 527–553. <https://doi.org/10.1177/026666914557338>

De Oliveira Santini, F., Ladeira, W. J., Sampaio, C. H., Perin, M. G., & Dolci, P. C. (2019). A meta-analytical study of technological acceptance in banking contexts. *International Journal of Bank Marketing*, 37(3), 755–774. <https://doi.org/10.1108/IJBM-04-2018-0110>

Franque, F. B., Oliveira, T., & Tam, C. (2023). Continuance intention of mobile payment: TTF model with trust in an African context. *Information Systems Frontiers*, 25, 775–793. <https://doi.org/10.1007/s10796-022-10263-8>

Franque, F. B., Oliveira, T., Tam, C., & de Oliveira Santini, F. (2021). A meta-analysis of the quantitative studies in continuance intention to use an information system. *Internet Research*, 31(1), 123–158. <https://doi.org/10.1108/INTR-03-2019-0103>

Gadhiya, P., & Panchal, N. (2021). Young women's continuance intentions to use communication and social media apps. *Indian Journal of Marketing*, 51(3), 41–55. <https://doi.org/10.17010/ijom/2021/v51/i3/158063>

Handarkho, Y. D. (2021). Understanding mobile payment continuance usage in physical store through social impact theory and trust transfer. *Asia Pacific Journal of Marketing and Logistics*, 33(4), 1071–1087. <https://doi.org/10.1108/APJML-01-2020-0018>

Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. *British Medical Journal*, 327, 557–560. <https://doi.org/10.1136/bmj.327.7414.557>

Hossain, M. A., Hossain, M. S., & Jahan, N. (2018). Predicting continuance usage intention of mobile payment: An experimental study of Bangladeshi customers. *Asian Economic and Financial Review*, 8(4), 487–498. <https://doi.org/10.18488/journal.aefr.2018.84.487.498>

Humbani, M., & Wiese, M. (2019). An integrated framework for the adoption and continuance intention to use mobile payment apps. *International Journal of Bank Marketing*, 37(2), 646–664. <https://doi.org/10.1108/IJBM-03-2018-0072>

Jadil, Y., Rana, N. P., & Dwivedi, Y. K. (2021). A meta-analysis of the UTAUT model in the mobile banking literature: The moderating role of sample size and culture. *Journal of Business Research*, 132, 354–372. <https://doi.org/10.1016/j.jbusres.2021.04.052>

Jeyaraj, A., Rottman, J. W., & Lacity, M. C. (2006). A review of the predictors, linkages, and biases in IT innovation adoption research. *Journal of Information Technology*, 21(1), 1–23. <https://doi.org/10.1057/palgrave.jit.2000056>

Kaur, S., Nim, D., & Jaggi, S. (2022). Relationship between humor in advertising and attitude towards ads : A meta-analysis. *Indian Journal of Marketing*, 52 (3), 8–20. <https://doi.org/10.17010/ijom/2022/v52/i3/160366>

Liébana-Cabanillas, F., Molinillo, S., & Ruiz-Montañez, M. (2019). To use or not to use, that is the question: Analysis of the determining factors for using NFC mobile payment systems in public transportation. *Technological Forecasting and Social Change*, 139, 266–276. <https://doi.org/10.1016/j.techfore.2018.11.012>

Lim, S. H., Kim, D. J., Hur, Y., & Park, K. (2019). An empirical study of the impacts of perceived security and knowledge on continuous intention to use mobile fintech payment services. *International Journal of Human-Computer Interaction*, 35(10), 886–898. <https://doi.org/10.1080/10447318.2018.1507132>

Linge, A., Singh, M., Kakde, B., & Punjani, K. K. (2022). Application of the theory of planned behaviour to predict college students online purchase intention : A systematic review and meta-analysis. *Indian Journal of Marketing*, 52(12), 39–57. <https://doi.org/10.17010/ijom/2022/v52/i12/172561>

Liu, Z., Ben, S., & Zhang, R. (2019). Factors affecting consumers' mobile payment behavior: A meta-analysis. *Electronic Commerce Research*, 19(3), 575–601. <https://doi.org/10.1007/s10660-019-09349-4>

Maduku, D. K. (2016). Fostering m-banking continuance intention: The role of trust in banks, self-efficacy, and mobile network quality. In, *10th International business conference* (pp. 186–196). <https://www.researchgate.net/publication/311582707>

Mahajan, Y., Kaul, N., & Sharma, S. (2023). A systematic literature review of quasi-experimental studies on consumer behavior in the sustainability domain. *Indian Journal of Marketing*, 53(8), 25–46. <https://doi.org/10.17010/ijom/2023/v53/i8/172974>

Mensah, I. K. (2019). Predictors of the continued adoption of WECHAT mobile payment. *International Journal of E-Business Research (IJEBr)*, 15(4), 1–23. <https://doi.org/10.4018/IJEBr.2019100101>

Mensah, I. K., Chuanyong, L., & Zeng, G. (2020). Factors determining the continued intention to use mobile money transfer services (MMTS) among university students in Ghana. *International Journal of Mobile Human Computer Interaction (IJMHCI)*, 12(1), 1–21. <https://doi.org/10.4018/IJMHCi.2020010101>

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *BMJ*, 339. <https://doi.org/10.1136/bmj.b2535>

Pal, A., Herath, T., De', R., & Rao, H. R. (2020). Contextual facilitators and barriers influencing the continued use of mobile payment services in a developing country: Insights from adopters in India. *Information Technology for Development*, 26(2), 394–420. <https://doi.org/10.1080/02681102.2019.1701969>

Park, M., Jun, J., & Park, H. (2017). Understanding mobile payment service continuous use intention: An expectation-Confirmation model and inertia. *Quality Innovation Prosperity*, 21(3), 78–94. <https://doi.org/10.12776/QIP.V21I3.983>

Patil, P. P., Rana, N. P., & Dwivedi, Y. K. (2019). Digital payments adoption research: A meta-analysis for generalising the effects of attitude, cost, innovativeness, mobility and price value on behavioural intention. In A. Elbanna, Y. K. Dwivedi, D. Bunker, & D. Wastell, (eds.), *Smart working, living and organising. TDIT 2018. IFIP advances in information and communication technology* (Vol. 533, pp. 194–206). Springer. https://doi.org/10.1007/978-3-030-04315-5_14

Rana, N. P., Dwivedi, Y. K., & Williams, M. D. (2015). A meta-analysis of existing research on citizen adoption of e-government. *Information Systems Frontiers*, 17(3), 547–563. <https://doi.org/10.1007/s10796-013-9431-z>

Reddy, T. T., & Rao, B. M. (2021). Determinants of continuance intention to use mobile wallet services : Light users vs heavy users. *Indian Journal of Marketing*, 51(2), 29–42. <https://doi.org/10.17010/ijom/2021/v51/i2/157549>

Sabirali, K. P., & Mahalakshmi, S. (2023). Corporate sustainability practices: A systematic literature review and bibliometric analysis. *Vision: The Journal of Business Perspective*. <https://doi.org/10.1177/09722629231203125>

Sardana, V., Mohapatra, A. K., Singhania, S., & Chakrabarti, D. (2024). Changing dynamics of banking landscape : What do we know and what lies ahead? *Prabandhan: Indian Journal of Management*, 17(1), 8–23. <https://doi.org/10.17010/pijom/2024/v17i1/173288>

Shaikh, A. A., & Karjaluoto, H. (2015). Mobile banking adoption: A literature review. *Telematics and Informatics*, 32(1), 129–142. <https://doi.org/10.1016/j.tele.2014.05.003>

Shaikh, A. A., Karjaluoto, H., & Chinje, N. B. (2015). Consumers' perceptions of mobile banking continuous usage in Finland and South Africa. *International Journal of Electronic Finance (IJEF)*, 8(2–4), 149–168. <https://doi.org/10.1504/IJEF.2015.070528>

Shao, Z., Zhang, L., Li, X., & Guo, Y. (2019). Antecedents of trust and continuance intention in mobile payment platforms: The moderating effect of gender. *Electronic Commerce Research and Applications*, 33, 100823. <https://doi.org/10.1016/j.elerap.2018.100823>

Sharma, S., Sharma, R., Kayal, G., & Kaur, J. (2022). Digital banking : A meta-analysis approach. *Indian Journal of Marketing*, 52(5), 41–68. <https://doi.org/10.17010/ijom/2022/v52/i5/169416>

Shetty, P., & Poornima, Y. (2023). Major antecedents of electronic customer relationship management (E-CRM) studies in the Indian banking sector :A systematic review. *Indian Journal of Marketing*, 53(10), 45–59. <https://doi.org/10.17010/ijom/2023/v53/i10/170594>

Shetty, S., Chaudhuri, M. S., & Shetty, A. (2022). The nexus of corporate social responsibility and consumer perception : Systematic review of the evidence. *Indian Journal of Marketing*, 52(7), 25–42. <https://doi.org/10.17010/ijom/2022/v52/i7/170537>

Singh, S. (2020). An integrated model combining the ECM and the UTAUT to explain users' post-adoption behaviour towards mobile payment systems. *Australasian Journal of Information Systems*, 24. <https://doi.org/10.3127/ajis.v24i0.2695>

Suurmond, R., van Rhee, H., & Hak, T. (2017). Introduction, comparison, and validation of *meta-essentials*: A free and simple tool for meta-analysis. *Research Synthesis Methods*, 8(4), 537–553. <https://doi.org/10.1002/jrsm.1260>

Talwar, S., Dhir, A., Khalil, A., Mohan, G., & Islam, A. K. (2020). Point of adoption and beyond. Initial trust and mobile-payment continuation intention. *Journal of Retailing and Consumer Services*, 55, 102086. <https://doi.org/10.1016/j.jretconser.2020.102086>

Tan, E., & Lau, J. L. (2016). Behavioural intention to adopt mobile banking among the millennial generation. *Young Consumers*, 17(1), 18–31. <https://doi.org/10.1108/YC-07-2015-00537>

Tan, X., Zhao, X., Zou, Y., & Zhang, M. (2022). Survival of the fittest: A meta-analysis of users' mobile payment adoption. *WHICEB 2022 Proceedings*. <https://aisel.aisnet.org/whiceb2022/57>

Thalhath, P. (2022). Antecedents and outcomes of brand love in Indian context: A systematic literature review. *International Journal of Indian Culture and Business Management (IJICBM)*, 27(3), 384–399. <https://doi.org/10.1504/IJICBM.2022.126938>

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. *MIS Quarterly*, 27(3), 425–478. <https://doi.org/10.2307/30036540>

Wang, S. (2020). A multigroup study of continuance intention of mobile banking in China. *International Journal of Transitions and Innovation Systems*, 6(3), 265–291. <https://doi.org/10.1504/IJTIS.2020.107491>

Zhou, T. (2013). An empirical examination of continuance intention of mobile payment services. *Decision Support Systems*, 54(2), 1085–1091. <https://doi.org/10.1016/j.dss.2012.10.034>

Zhou, T. (2014). Understanding the determinants of mobile payment continuance usage. *Industrial Management & Data Systems*, 114(6), 936–948. <https://doi.org/10.1108/IMDS-02-2014-0068>

APPENDIX

Table A1. Weight Analysis - CI

Sl. No.	Independent Constructs (a)	Significant (b)	Non-Significant (c)	Total (d)	Weight (b)/(d)
1	Satisfaction	38	2	40	0.95*
2	Trust	20	6	26	0.77
3	Perceived Usefulness	15	5	20	0.75
4	Attitude	13	0	13	1.00*
5	Social Influence	7	3	10	0.70
6	Perceived Ease of Use	6	2	8	0.75
7	Perceived Risk	7	1	8	0.88*
8	Subjective Norms	6	1	7	0.86*
9	Effort Expectancy	5	1	6	0.83*
10	Perceived Security	3	3	6	0.50
11	Habit	5	0	5	1.00*
12	Performance Expectancy	5	0	5	1.00*
13	Facilitating Conditions	4	0	4	1.00**
14	Convenience	3	0	3	1.00**
15	Flow	3	0	3	1.00**
16	Perceived Behavioral Control	3	0	3	1.00**
17	Perceived Service Quality	3	0	3	1.00**
18	Perceived Value	3	0	3	1.00**
19	Personal Innovativeness	3	0	3	1.00**

Note. * Best predictor ; ** Promising predictor.

Table A2. Weight Analysis – Satisfaction

Sl. No.	Antecedents (a)	Significant (b)	Non-Significant (c)	Total (d)	Weight (b)/(d)
1	Perceived Usefulness	16	2	18	0.89*
2	Confirmation	13	2	15	0.87*
3	Trust	8	2	10	0.80*
4	Service Quality	5	4	9	0.56
5	Perceived Ease of Use	6	1	7	0.86*
6	System Quality	4	2	6	0.67
7	Information Quality	2	2	4	0.50
8	Perceived Security	1	3	4	0.25
9	Perceived Risk	3	0	3	1.00**

Note. * Best predictor; ** Promising predictor.

Table A3. Weight Analysis – Trust

Sl. No.	Antecedents (a)	Significant (b)	Non-Significant (c)	Total (d)	Weight (b)/(d)
1	Service Quality	8	0	8	1.00*
2	Perceived Security	7	0	7	1.00*
3	Information Quality	6	0	6	1.00*
4	Reputation	4	0	4	1.00**
5	System Quality	3	1	4	0.75

Note. * Best predictor ; ** Promising predictor.

Table A4. Weight Analysis – Perceived Usefulness

Sl. No.	Antecedents (a)	Significant (b)	Non-Significant (c)	Total (d)	Weight (b)/(d)
1	Confirmation	11	1	12	0.92*
2	Perceived Ease of Use	9	2	11	0.82*
3	Compatibility	2	0	2	1.00#
4	Mobility	1	1	2	0.50
5	Perceived Security	1	1	2	0.50
6	Task-Technology Fit	2	0	2	1.00**
7	Ubiquity	2	0	2	1.00**

Note. * Best predictor ; ** Promising predictor.

About the Authors

Ashique Ali K. A. is a Research Scholar in the Department of Commerce, CUTN, and is currently working as an Assistant Professor at NMIMS Deemed-to-be University, Hyderabad. His research interests include digital banking, consumer behavior, and personal finance. He has published articles in Scopus/WoS-indexed journals.

Dr. Rameshkumar Subramanian is a Professor in the Department of Financial Administration, School of Management, Central University of Punjab. He specializes in the fields of banking and finance, and his current research focuses on bank profitability, digital banking, FDI, financial literacy, and financial well-being. He has more than 17 years of teaching and research experience. He has published research papers in Scopus/WoS-indexed journals.